点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读 :购彩大厅Welcome客户端-购彩大厅Welcome注册
首页>文化频道>要闻>正文

购彩大厅Welcome客户端-购彩大厅Welcome注册

来源:购彩大厅Welcome开奖结果2023-12-09 17:48

  

山西女篮开放训练备战常规赛末段赛程******

  中新网太原2月3日电 (记者 胡健)2日下午,山西竹叶青酒女篮举行媒体开放日活动 ,年轻 的女篮队员们进行了投篮 、战术演练、分组对抗等系统训练 ,以备战接下来 的常规赛末段。

  目前 ,山西竹叶青酒女篮排名B组第二 ,还剩三场常规赛 。分别 是2月9日对阵陕西女篮 ;2月11日对阵东莞女篮 ;2月13日对阵天津女篮。将根据赛果确定最终排名,排名前12将进入季后赛 。

山西竹叶青酒女篮主教练塞萨。 韦亮 摄山西竹叶青酒女篮主教练塞萨 。 韦亮 摄

  2022年10月1日 ,在2022年女篮世界杯对阵美国队的决赛上,武桐桐在突破中受伤倒地 ,中途退出了比赛。一个月后 ,武桐桐进行了手术。目前,武桐桐仍在北京进行康复 ,预计下赛季开始前将归队训练。

  武桐桐受伤后 ,曾入选国家队的老将赵志芳身上的担子更重了 。“作为球队老将 ,在场上还是要尽可能地带动年轻球员 ,把武桐桐 的那份责任扛起来。”赵志芳说。

山西女篮队员在训练中。 韦亮 摄山西女篮队员在训练中 。 韦亮 摄

  山西女篮主教练塞萨介绍 ,1月25日 ,球队就开始集结训练 。这段时间主要是针对球员 的体能恢复,慢慢寻找比赛的感觉。塞萨认为,目前球队 的年轻队员里 ,最具天赋 的就是张懿 ,不仅是球技方面 ,球商方面也很出色,相信在接下来的比赛会有更大 的进步。

山西女篮主教练塞萨为队员们讲解战术。 韦亮 摄山西女篮主教练塞萨为队员们讲解战术。 韦亮 摄

  山西竹叶青酒女篮副总经理兼领队李剑飞表示,整体上大家还 是按着赛季开始前的计划进行 ,这个赛季武桐桐受伤 , 是球队新老交替 的一个好机会 ,很多年轻球员得到锻炼。希望下赛季,在阵容齐整 的情况下,特别 是有机会恢复主客场之后 ,打出更好的成绩。(完)

购彩大厅Welcome客户端

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖 的高冷,今年诺贝尔化学奖其实是相当接地气了 。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达 、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖 的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年 ,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖 ,对药物合成(以及香料等领域)做出了巨大贡献 。

  今年,他第二次获奖的「点击化学」 ,同样与药物合成有关。

  1998年 ,已经 是手性催化领军人物 的夏普莱斯,发现了传统生物药物合成 的一个弊端 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年 ,人们主要在自然界植物 、动物,以及微生物中能寻找能发挥药物作用 的成分 ,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化 ,让现代医学取得了巨大的成功 。然而随着所需分子越来越复杂 ,人工构建 的难度也在指数级地上升 。

  虽然有 的化学家 ,的确能够在实验室构造出令人惊叹的分子 ,但要实现工业化几乎不可能 。

  有机催化是一个复杂的过程 ,涉及到诸多 的步骤。

  任何一个步骤都可能产生或多或少 的副产品 。在实验过程中 ,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物 。

  为了解决这些问题 ,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4] 。

  点击化学 的确定也并非一蹴而就 的,经过三年 的沉淀 ,到了2001年 ,获得诺奖 的这一年,夏普莱斯团队才完善了「点击化学」 。

  点击化学又被称为“链接化学” ,实质上 是通过链接各种小分子,来合成复杂 的大分子。

  夏普莱斯之所以有这样的构想 ,其实也 是来自大自然的启发 。

  大自然就像一个有着神奇能力 的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物 。

  大自然创造分子的多样性 是远远超过人类 的,她总是会用一些精巧 的催化剂,利用复杂的反应完成合成过程 ,人类 的技术比起来 ,实在是太粗糙简单了。

  大自然 的一些催化过程 ,人类几乎是不可能完成 的。

  一些药物研发 ,到了最后却破产了,恰恰 是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想 ,既然大自然创造的难度 ,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有 的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键 的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂 的化合物 。

  其实这种方法 ,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块 ,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图 ,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发 ,构想出了碳-杂原子键(C-X-C)为基础 的合成方法 。

  他 的最终目标,是开发一套能不断扩展 的模块 ,这些模块具有高选择性 ,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」 的工作 ,建立在严格 的实验标准上:

  反应必须 是模块化,应用范围广泛

  具有非常高 的产量

  仅生成无害的副产品

  反应有很强 的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好 是水) ,且容易移除

  可简单分离 ,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子 ,并在2002年的一篇论文[7]中指出 ,叠氮化物和炔烃之间的铜催化反应是能在水中进行 的可靠反应 ,化学家可以利用这个反应,轻松地连接不同的分子 。

  他认为这个反应的潜力是巨大的 ,可在医药领域发挥巨大作用 。

  二 、梅尔达尔:筛选可用药物

  夏尔普莱斯 的直觉是多么地敏锐,在他发表这篇论文 的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而 是一个在“传统”药物研发上 ,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库 ,囊括了数十万种不同的化合物 。

  他日积月累地不断筛选 ,意图筛选出可用 的药物 。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外 ,炔与酰基卤化物分子 的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料 ,以及农业化学品关键成分 的化学构件。过去的研发,生产三唑的过程中 ,总 是会产生大量 的副产品 。而这个意外过程 ,在铜离子的控制下,竟然没有副产品产生 。

  2002年 ,梅尔达尔发表了相关论文 。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇 ,并促使铜催化 的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛 的点击化学反应 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三 、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华 的却是美国科学家——卡罗琳·贝尔托西 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注 ?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到 ,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题 ,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的 。

  这便 是所谓的生物正交反应 ,即活细胞化学修饰 ,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门 ,其实最开始也和“点击化学”无关 。

  20世纪90年代,随着分子生物学 的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行 。

  然而位于蛋白质和细胞表面,发挥着重要作用 的聚糖,在当时却没有工具用来分析。

  当时 ,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年 的时间 。

  后来 ,受到一位德国科学家 的启发 ,她打算在聚糖上面添加可识别的化学手柄来识别它们 的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感 ,不与细胞内 的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是 ,这个最佳化学手柄,正 是一种叠氮化物 ,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来 ,便可以很好地分析聚糖的结构 。

  虽然贝尔托西 的研究成果已经是划时代的,但她依旧不满意 ,因为叠氮化物 的反应速度很不够理想。

  就在这时 ,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔 的点击化学反应。

  她发现铜离子可以加快荧光物质 的结合速度,但铜离子对生物体却有很大毒性 ,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注 ?

  2004年 ,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成) ,由此成为点击化学 的重大里程碑事件 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注 ?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域 。

  在肿瘤 的表面会形成聚糖,从而可以保护肿瘤不受免疫系统 的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现 ,虽然「点击化学」和「生物正交化学」 的翻译 ,看起来很晦涩难懂,但其实背后 是很朴素的原理 。一个是如同卡扣般 的拼接 ,一个 是可以直接在人体内 的运用。

「  点击化学」和「生物正交化学」都还 是一个很年轻的领域,或许对人类未来还有更加深远 的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图 :赵筱尘 巫邓炎)

[责编 :天天中]
阅读剩余全文(

相关阅读

推荐阅读
购彩大厅Welcome邀请码是否恢复冥王星“行星”地位?天文学家将进行辩论
2023-05-17
购彩大厅Welcome手机版华世奎、谭延闿:南北两位颜楷大家,你更喜欢谁
2023-08-02
购彩大厅Welcome官网 哲学是一个动词,从大问题开始
2023-10-02
购彩大厅Welcome赔率2019款“路虎卫士”谍报曝光,新车或于9月正式上市!
2023-07-13
购彩大厅Welcome网址亲历:美国儿童游泳大赛
2023-11-25
购彩大厅Welcome充值《纪元1800》评测:迎接工业时代的洗礼
2024-01-03
购彩大厅Welcome走势图女子遭壮汉尾随抢劫 抢走5千还要转账20万
2023-12-14
购彩大厅Welcome骗局“赌徒”暴风影音:处在暴风雨中,难遇晴天
2023-11-10
购彩大厅Welcome注册网陕西扶贫开发办副主任陈肖坪被双开:搞政治投机
2024-02-04
购彩大厅Welcome玩法号称规模超700亿的集团崩了!
2024-01-29
购彩大厅Welcome手机版APP20岁后做什么,未来10年能够受益匪浅?
2023-10-13
购彩大厅Welcome计划加拿大政府呼吁身在乌克兰的加拿大人尽快撤离
2024-02-15
购彩大厅Welcome漏洞章子怡挺巨肚外出 遭吸二手烟
2023-11-03
购彩大厅Welcome官方网站A股五月行情预判 机构称谨慎看待结构性调整
2023-09-20
购彩大厅Welcome娱乐抖音入局,60秒能否重新定义Vlog?
2024-03-26
购彩大厅Welcomeapp签了合同才能结婚?准夫妻闹矛盾闹到派出所
2023-05-04
购彩大厅Welcome代理日本明仁天皇退位在即 大批民众参观皇宫
2023-10-28
购彩大厅Welcome软件 快讯!印尼总统佐科决定迁都,搬离爪哇岛
2024-02-08
购彩大厅Welcome投注世界首富出轨剧“新剧情”:谍战、爱情和金钱
2023-05-18
购彩大厅Welcome平台美英突然愿意给日本机密技术 原因很直接
2023-07-19
购彩大厅Welcome网投2018-10-19 期幻乐之城闺蜜互怼王菲吐槽那英嗓门大嘉宾:王菲 何炅 那英
2024-01-24
购彩大厅Welcome下载成都国企6亿元入股锤子被调查?官方:消息严重不实
2023-10-05
购彩大厅Welcome登录8种情况需尽早肺移植
2023-12-07
购彩大厅Welcome规则 画下梦境 乘着风去旅行
2024-02-13
加载更多
购彩大厅Welcome地图